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Brittle material behavior and mode of failure are contrasted with those characteristics of ductile materials.
The stochastic nature of brittle fracture, which results from the random occurrence of fracture-initiating
microstructural imperfections, necessitates a probabilistic fracture mechanics approach to design with
brittle materials. It is also clearly shown which main properties of brittle materials have to be optimized
to improve the reliability of mechanically loaded components made of brittle materials. Important features
of designing with brittle materials are elucidated and illustrated by an exemplary design calculation of a
ceramic disc spring. It is shown how even environmentally induced subcritical crack growth, characteristic
of ceramic materials, can be adequately accounted for in the assessment of reliability.
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1. Introduction

Throughout history, brittle materials have been used for
making mechanically loaded components and devices. In fact,
the earliest materials for ancient tools, e.g., natural stone and
bone, were brittle. One of the major materials for engineering
construction at the beginning of the industrial era was brittle
cast iron, of which the first metal bridges were built, also.
However, much skill and experience, rather than a methodol-
ogy, were involved in designing with brittle materials.

The advances in the production of steel and the develop-
ment of other ductile alloys in the last one hundred years or so
elevated them to the main structural materials. This coincided
with the foundation and development of design methodologies,
and particularly the related calculation of strength. Hence, to-
day’s well-established design practices are generally appropri-
ate only to ductile materials.1

The in-service demands made on structural components and
machine parts often require the application of brittle materials,
particularly ceramics and glasses, due to certain other outstand-
ing properties such as high-temperature stability, oxidation and
corrosion resistance, dimensional stability, hardness and wear
resistance, or other special thermal, electrical, or optical prop-
erties. A special approach to design and the ever-improving
mechanical properties of modern engineering ceramics enable
their safe and optimal use as structural materials. Many ex-
amples of the successful and beneficial application of engineer-
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Nomenclature

A parameter in the approximation of the distribution of
flaw lengths

C parameter of subcritical crack growth
C1 parameter of subcritical crack growth
E modulus of elasticity
E� E for plane strain, E/(1 − �) for plane stress
F applied force
KI stress intensity factor for mode I loading
KIc fracture toughness
Nc mean number of critical flaws within a component
Pf probability of failure
Ps probability of survival
V volume
V0 reference (or unit) volume
Y geometry constant
a crack length
ac critical crack length
ai initial crack length
g frequency distribution density function of flaw lengths
m Weibull modulus
n parameter of subcritical crack growth
p parameter in the approximation of the distribution of

flaw lengths
r position vector
t time
� gamma-function
�c energy expended per unit area of crack advancement
� Poisson’s ratio
� applied stress
�0 characteristic strength
�3b flexural (or bending) strength determined by

three-point bending
�4b flexural (or bending) strength determined by four-point

bending
�f fracture stress, i.e. tensile strength
�� meridian stress in a disc spring
�� circumferential stress in a disc spring
� equivalent stress
�xz shear stress in a disc spring
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ing ceramics for mechanically loaded components, especially
at high temperatures and in a hostile environment, are already
known: from bearings, dies and cutting tools, to valves for
internal combustion engines, gas turbine components, and also,
bio-implants.

The necessity for an essentially different design practice for
brittle materials based on the probabilistic calculation of
strength, as compared with that generally applied to conven-
tional, ductile materials, comes from the different modes and
criteria of failure in these two types of materials. This paper
reveals the reason and presents the methodology for the proba-
bilistic assessment of the reliability of load-bearing compo-
nents made of brittle materials. The consequent peculiarities of
designing with brittle materials are clearly pointed out. These
are finally illustrated using the simple and clear example of a
ceramic disc spring.

2. Fracture and Strength of Ductile and Brittle
Materials

2.1 Distinction Between Ductile and Brittle Material
Behavior and Fracture

The response up to the point of failure of a material under
an applied load can be either purely elastic, or it involves a
permanent deformation. This is closely connected to the mode
of fracture, which in the first case is brittle, and in the latter
case is ductile. Accordingly, materials are also classified as
being either brittle or ductile.

The factor that decides which of the two main types of
material behavior and fracture takes place in crystalline solids
at low and moderate temperatures is the mobility of disloca-
tions. In metallic materials the nature of atomic bonding and
relatively simple crystal structures lead to the generally high
mobility of dislocations driven by stresses above a certain
limit, i.e., the yield strength. This results in general plasticity
and strengthening (work-hardening) prior to fracture, and
hence, metals are typically ductile, although most of them also
become brittle below a certain transition temperature. Ductile
fracture proceeds after voids, which either pre-exist or have
nucleated within the material, have grown by plastic flow so
much that they link and give a fracture path. In the case of
macroscopically localized plastic deformation, ductile fracture
may also result from the loss of stability of a loaded compo-
nent. Although the micromechanisms of ductile fracture are
rather complex and influenced by numerous factors, and the
phenomenological elasto-plastic deformation behavior of duc-
tile material is essentially more difficult to model than elastic-
ity, the relative determinacy of the macroscopic stress-strain
response and of the values of characteristic strength (e.g., the
yield strength and ultimate tensile strength) enable a determin-
istic approach to the calculation of strength and to design.

In contrast to metallic materials, the motion of dislocations
in ionically and covalently bonded materials with complex
crystal structures is almost thoroughly inhibited, which leads to
extremely high values of yield strength. This is why ceramic
materials, for instance, are inherently brittle. Generally, mate-
rials are, or become, brittle whenever stress relaxation by the
internal redistribution of material, e.g., by dislocation motion,
is sufficiently restrained. In most metals this happens at low

enough temperatures but can also be caused by the presence of
alloying elements, environmentally assisted hydrogen attack,
or neutron irradiation. Thus, before the yield strength can be
reached, brittle materials fail either by transgranular cleavage
or by brittle intergranular fracture (BIF) in a catastrophic way
without any or with negligible macroscopic permanent defor-
mation. Cleavage or BIF is induced by a crack that under a
certain tensile stress becomes unstable and propagates at the
speed of sound between crystal planes or grains by succes-
sively breaking interatomic bonds. Minute internal and surface
crack-like flaws are an inevitable consequence of the manu-
facturing process but can also result from a thermal shock or
inappropriate handling; other microstructural defects can also
turn into microcracks under the action of stress. Cracks of any
size cause stress concentrations at their tips. Since a redistri-
bution (relaxation) of stress by plastic flow is not possible, due
for example to the lack of dislocation mobility, the stress can
locally reach the cohesive strength and tear the atomic bonds
causing the crack to propagate. The form, density, and distri-
bution, and most critically, the size of the inherent microscopic
flaws are the decisive factors for the onset of fracture under an
applied load and thus for the strength of a brittle material. Since
the occurrence of microstructural defects is of a stochastic na-
ture, so is brittle fracture; and hence the strength of a brittle
material is an intrinsically statistical quantity. This is con-
firmed by the large scatter of experimental data. Consequently,
design with brittle materials requires a probabilistic approach.

2.2 Criterion for the Actual Fracture Mode

Two different failure modes compete in any material/
component with increasing applied stress level; either fast frac-
ture will happen by sudden crack propagation, or the yield
strength will be reached first and further increase in the applied
stress will cause the material to fail in a ductile manner.

According to the modified Griffith energy-balance criterion,
assuming linear elastic material behavior, a crack will cata-
strophically propagate under a uniform applied tensile loading
normal to the crack plane if a certain combination of the ap-
plied stress � and the crack length a reaches a critical value,
i.e., if

�a1�2 =
1

Y
�E��c�

1�2 (Eq 1)

where E� is the modulus of elasticity, E, for plane stress and
E/(1 − �2) for plane strain conditions, with � as Poisson’s ratio,
�c as the energy absorbed (or expended) per unit area of crack
advancement, and Y as a dimensionless constant of the order of
unity that depends on the crack configuration and geometry.
Thus the resistance of a material to crack propagation is deter-
mined by the material property

KIc = �E��c�
1�2 (Eq 2)

called the fracture toughness. It can also be regarded as the
critical value of the stress intensity factor KI � Y�a1/2 that
characterizes the stress field near the tip of a crack in a linearly
elastic solid under mode I (normal to the crack plane) loading.

Since the extremely high values of yield strength in brittle
materials are difficult even locally to reach, virtually no dissi-
pation of energy due to plastic flow is possible, and the energy
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required for crack propagation is essentially needed only for
the formation of new fracture surfaces. Hence these materials
have intrinsically low fracture toughness. Inherent microstruc-
tural defects are then always large enough to allow the failure
condition (Eq 1) for fast fracture to become critical and deter-
minative for strength. It should be noted that this failure crite-
rion does not apply for compressive stresses. These are not
directly harmful for inherent flaws, and brittle materials in
compression fail by a different mechanism.[1] This, together
with the high resistance to yielding, results in compressive
strengths of brittle materials being one order of magnitude
higher than tensile strengths and generally even better than
those of ductile materials. Appropriate design should take ad-
vantage of this property.

The fracture toughness of ductile materials, and thus the
resistance to sudden crack propagation, is substantially higher
than that of brittle materials because the yield strength is
reached in a wide region around the crack tip, and a lot of
energy is absorbed by plastic flow during crack propagation. In
fact, a crack in this case does not propagate by cleavage but by
the coalescence of microvoids nucleated in front of the crack.
A sharp crack also tends to blunt by plastic flow so that crack
propagation may even be arrested if the applied stress is not
increased. Excessive plasticity requires corrections to be intro-
duced to linear elastic fracture mechanics theory and may in-
deed render it inapplicable. Anyway, the characteristically low
yield strength of ductile materials enables general yielding to
occur at an applied stress far below that needed for the stress
intensity factor to reach the critical value for the typical size of
inherent flaws. Therefore, a ductile material can fail by fast
crack propagation only if a crack much longer (of a different
order of magnitude) than inherent flaws exists. This can be a
notch, a flaw in welding, or a fatigue crack.

2.3 Time-Dependent Strength Degradation

Several time-dependent damaging processes can lead to a
gradual degradation of strength and thereby to eventual frac-
ture; these include fatigue, creep, oxidation, corrosion, and
subcritical crack growth. Their importance differs for the fail-
ure of a ductile or a brittle material.

Fatigue under cyclic loading is prominent in metals where
localized plastic flow causes cracks to initiate and then to ad-
vance step by step with load reversals. The deficiency of plastic
flow in brittle materials led to the belief that they do not suffer
from fatigue, at least not at low temperatures, although fatigue
effects have recently been observed in ceramics as well, but are
attributed to other irreversible events.[2,3]

At elevated temperatures failure can happen as a conse-
quence of creep. Again due to the, if not completely inhibited,
still rather constrained motion of dislocations, creep in ceramic
materials is substantially less pronounced than in metals, and
due to higher melting points, it starts at considerably higher
temperatures, out of the range of normal technical rel-
evance.[2,4]

The chemical inertness of ceramics, which results in oxida-
tion and corrosion resistance, is one of their most beneficial
properties. Metals, on the other hand, are highly susceptible to
environmental attack.

Even in the absence of creep and corrosion, brittle fracture

of ceramics and glasses still often takes place after they have
for some time been subjected to an unaltered loading. This
delayed fracture is caused by subcritical crack growth (SCCG),
namely the steady growth of cracks smaller than those, which
would have led to immediate fracture. These cracks slowly
grow under the influence of stress and environment until one
reaches the critical size for the applied load, and fracture en-
sues. The phenomenon is sometimes referred to as static fa-
tigue. This effect is similar to the stress corrosion cracking
occasionally observed in metals in a hostile environment.
SCCG in ceramics is often ascribed to an analogous mecha-
nism of thermomechanically activated chemical attack of
bonds at the crack tip.[5] There are, however, some other pos-
sible explanations.[6,7]

3. Probability of Brittle Failure

3.1 Probability of Immediate Brittle Fracture

In the following, the origin of the stochastic nature of
strength of brittle materials, the description of which requires a
probabilistic approach, will be examined more closely.

According to the criterion for brittle fracture given by Eq 1
and the definition of fracture toughness, Eq 2, the tensile strength
�f of a brittle material is determined by the relationship

�f =
1

Y

KIc

a1�2 (Eq 3)

It depends on the length a of the inherent flaw that will cause
fracture. Since the length of randomly distributed flaws within
the material is a stochastic variable, the tensile strength is as
well: it depends on the probability of finding within the com-
ponent a crack long enough to cause fracture at a certain stress
level.

The failure criterion given by Eq 3 can be rearranged to
define the critical flaw size ac for a given applied tensile stress
� normal to the plane of the flaw:

ac = �1

Y

KIc

� �2

(Eq 4)

Any flaw longer than or equal to ac will be destructive under
the stress �.

Assuming that a component fails if any one flaw initiates
fracture (the weakest link hypothesis), and that there is no
interaction between flaws, the probability of failure is equal to
the probability of finding at least one critical flaw in the com-
ponent and is given by

Pf = 1 − exp�−Nc� (Eq 5)

where Nc is the average number of critical flaws in a large set
of identical components.[8] For a homogeneously loaded com-
ponent and a uniform distribution of flaws of different lengths
through the volume, this number equals the local density of
critical flaws multiplied by the volume. This implies a size
effect: the larger the component, the more likely the critical
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defect is to be found, and the higher probability of failure. For
a nonuniform stress field and/or nonuniformly distributed
flaws, the mean number of critical flaws is obtained by inte-
grating the local density of critical flaws over the volume:

Nc = �
V
��

ac

�

g(a,r) da�dV (Eq 6)

where g(a,r) is the frequency distribution density of flaw
lengths at a point defined by the position vector r [g(a,r) da
gives the average number of flaws of a length between a and a
+ da in a unit volume]. Even for a uniform distribution of flaws
through the volume, i.e., for g(a,r) ≡ g(a), in the case of non-
homogeneous loading, the local density of critical flaws given
by the inner integral in Eq 6 still varies over the volume since
the lower limit of integration depends on the stress at a certain
point according to Eq 4.

For a uniform volume distribution of flaws of different
lengths, the distribution of flaw lengths in the relevant region
of longest cracks (which in fact are decisive for fracture) can be
adequately approximated by a simple function of the form

g�a,r� ≡ g�a� = Aa−p (Eq 7)

with adjustable parameters A and p. The inner integral in Eq 6
can then readily be evaluated, and after substituting the expres-
sion given by Eq 4, one obtains for the probability of failure the
well-known two-parameter Weibull distribution:

Pf = 1 − exp� −
1

V0
�

V
����

�0
�m

dV� (Eq 8)

where m and �0 are functionally related to A and p, and V0 is
a certain reference (or unit) volume; the notation

��� = �� for � � 0

0 for � 	 0

is used to explicitly indicate that the volume integration should
be performed only over the region loaded in tension. Starting
from only the weakest link hypothesis, Weibull came to the
above distribution heuristically.[9,10] Freudenthal related it to
the distribution of fracture initiating flaws within the material,
showing that it follows directly from the weakest link hypoth-
esis and a Griffith-type criterion for fracture, for any distribu-
tion of flaw lengths which for a → � converges toward zero as
fast as a−k, where k is any constant.[11]

The Weibull parameters m and �0 can be directly deter-
mined as material constants by a statistical evaluation of mea-
sured values of strength.[2,12] In this way the distribution of
lengths of the most severe flaws (including their random ori-
entation) is indirectly measured as well. A high value of the
Weibull modulus m corresponds to small variations in strength,
and thus in flaw lengths. Engineering ceramics distinguish
themselves by Weibull moduli higher than 10. The other pa-
rameter �0 represents the characteristic strength; it can be in-
terpreted as the stress at which (1 − e−1) · 100% � 63.2% of

uniaxially and uniformly loaded samples of the reference vol-
ume V0 will fail.

The above considerations refer to a uniaxial state of stress.
For multiaxial stress conditions, an appropriate equivalent (or
effective) stress � should be substituted for � in Eq 8. The
problem of defining a proper criterion for brittle fracture under
mixed mode loading, and thus specifying an equivalent stress
for a multiaxial stress state, is still subject to debate.[13-15] As a
first approximation, the equivalent stress can be taken to be the
highest principal stress. This is plausible at least in cases where
the highest principal stress is considerably larger than the oth-
ers. However, Griffith’s criterion and the weakest link hypoth-
esis, as underlying assumptions, are applicable only to tensile
stresses. In the case that absolute values of compressive stress
components are several times higher than tensile components,
a completely different failure criterion has to be considered.

3.2 Consideration of Subcritical Crack Growth

Of all time-dependent strength degradation processes in ce-
ramics and glasses, subcritical crack growth is most important
and has to be considered in the assessment of failure probabil-
ity.

Phenomenologically, the rate of the SCCG can be approxi-
mated (from above) by the power low

da�dt = CK I
n (Eq 9)

where C and n are material parameters, (strongly) dependent on
temperature and environmental conditions, and especially on
the moisture content of the environment. Susceptibility to
SCCG decreases with increasing values of n. For engineering
ceramics the exponent n is higher than 30 and can even exceed
200.[16]

By integrating Eq 9 (recalling that KI � Y�a1/2), it is pos-
sible to calculate the time a crack of initial length ai under the
action of a constant stress � would need to reach the critical
length ac, and cause fracture. As a result of SCCG, the number
of critical flaws Nc thus increases with time since the lower
limit of the inner integral in Eq 6 becomes time-dependent, i.e.,
ai � ai(t). Taking this into account in deriving the formula for
the probability of failure one obtains

Pf = 1 − exp� −
1

V0
�

V
����

�0
�m�1 +

���2

C1
t�m��n−2�

dV� (Eq 10)

with C1 � 2/[C(n − 2) Y2KIc
n−2]. Equation 8 for the probability

of failure immediately after the application of load appears as
a special case of Eq 10 for t � 0. The symbol for equivalent
stress, �, is introduced to explicitly allow for the possibility of
dealing with multiaxial stress states.

4. Peculiarities of Designing With Brittle
Materials

The character and form of Eq 10 for the probability of
failure, on which design calculations should be based, allows
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us to comprehend and summarize the following peculiarities of
designing with brittle materials:

• The calculation of strength is based on a probabilistic
evaluation. Each level of applied stress is associated with
a certain probability of failure.

• The integration over the volume of the component brings
about the size effect: at a given stress level the probability
of failure of a component increases with the size of the
component.

• Tensile stresses are decisive for the risk of brittle failure.
In the case of a multiaxial stress state, possible compres-
sive stress components enter into the calculation of an
appropriately defined equivalent stress. For exceptionally
high compressive stresses, however, the calculation of
strength has to be based on completely different premises.
In any case, in terms of strength, brittle materials are more
appropriate for components loaded mainly in compression,
whereas tensile stresses should be minimized by appropri-
ate design.

• Since the Weibull modulus m, which typically takes high
values, appears as an exponent in Eq 10, the probability of
failure is very sensitive to small variations in the highest
tensile stresses that arise. Therefore, the distribution of
stresses should be kept as uniform as possible, and design-
conditioned stress concentrations must be avoided in any
case.

• Since stresses at every point in the component enter into
the calculation of strength, a precise knowledge of stress
distribution over the volume is required. This can gener-
ally be achieved only by means of computer aided numeri-
cal methods of analysis. Most often the finite element
method is used.

• The probability of failure of mechanically loaded ceramic
components increases with time. The phenomenon of sub-
critical crack growth, which is responsible for this, should
be considered in the calculation of strength.

5. Brittle Material Data for Design Calculation

Worldwide efforts during the last three decades in the de-
velopment of structural ceramics resulted in greatly improved
performance of these materials. Most of them now reach more
than twice the strength measured in the 1970s.[17] The process
technologies have become less expensive and more reliable, so
that Weibull moduli of up to 30 are even measured on sets of
samples taken from components.[18] Higher toughness and the
employment of various toughening mechanisms have led to
more defect tolerant materials. The understanding of the de-
pendence of microstructure and material properties on the
properties of raw material and process technology steadily im-
proves, allowing materials to be tailored for specific applica-
tions[19]

Properties of ceramics strongly depend on the manufactur-
ing route. The strength, for instance, as explained above, di-
rectly depends on the size of the critical flaw, which can arise
in almost any process step: inclusions can be trailed in with raw
material, pores or badly sintered regions can result from bad
mixing of ingredients, density gradients occurring in the pro-

duction of green bodies may cause cracks or pores to appear,
and the same may result from inappropriate sintering condi-
tions.

Some simple design studies have been performed using
typical values for relevant material properties to demonstrate
the principal suitability of engineering ceramics for mechani-
cally loaded components.[20] These studies clearly show the
crucial influence of material properties on the long-term reli-
ability of the components. However, data that characterize
these properties are still not included in manufacturers’ data
sheets.

Only a few ceramic materials have been thoroughly studied
with respect to all kinds of properties, for example the silicon
nitride NC132.[21-23] But often these investigations were aimed
at other objectives and have to be considered unsystematic with
regard to the usability of these data for design purposes. A
consequence of this is a serious lack of data appropriate for
design with ceramics. Good reviews of existing data are
rare.[16,24] Thus in most cases, and especially if subcritical
crack growth, fatigue or high temperature are to be considered
(as they often are), relevant design data for the time being have
to be determined by designers themselves. This has been nicely
shown in the case of the silicon nitride turbo charger rotor.[25]

To improve this situation the European Structural Integrity
Society (ESIS) recently started a concerted action to determine
all design relevant data of a typical commercial silicon nitride
material, first results being already reported.[26-28]

To give an example, Table 1 presents a collection of prop-
erties of three classes of engineering ceramics, which are suit-
able for structural applications. Alumina ceramics are very
hard and wear resistant, they have a medium strength for a low
price, and their thermal shock resistance is very low. Silicon
carbide ceramics are a good choice if high strength at very high
temperatures is required. They are much more thermal shock
resistant than alumina ceramics. Silicon nitride ceramics have
high strength at room temperature, high toughness, and very
high thermal shock resistance. For many structural applications
they are the best choice, but they are relatively expensive.
Typical values for material properties are given in Table 1,
which are relevant for commercial ceramics and should only
give a rough estimate. The range of the data is often relatively
wide, since cheaper qualities can also be suitable for less de-
manding applications. Extreme values, as those sometimes re-
ported by various groups of researchers, which cannot be ex-
pected from commercial materials, have not been considered
(for example, for nano-particle reinforced silicon nitrides, flex-
ural strength values of more than 1300 MPa were reported).[29]

Attention should be given to the reported values for the
strength of ceramic materials. Usually, and in Table 1 as well,
flexural (or bending) strength is given, which is obtained by
applying the Weibull statistics to the maximum bending
stresses at fracture of a number of equal specimens. The prob-
ability of failure, however, as can be seen from Eq 8, depends
on the Weibull modulus m, the size of the specimen, and on the
stress distribution over the specimen. Thus the characteristic
strength �0, to be applied in the design calculations, and which
refers to the uniaxially loaded reference volume V0, has to be
calculated first. The conversion formula is obtained by equal-
izing the probabilities of failure in both situations.[2] If four-
point bending with the load applied at the quarter points of
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prismatic bars with the rectangular cross section has been ap-
plied for the determination of the flexural strength �b4, the
characteristic strength is given by

�0 = �b4 


� V

V0
�1�m� m + 2

4�m + 1�2�1�m

��1 +
1

m�
(Eq 11)

where V is the stressed (gage-length) volume of the specimen
and � is the gamma-function. For instance, for a standardized
four-point bending specimen 40 mm long, 4 mm wide, and 3
mm high, a Weibull modulus of m � 15, and a chosen ref-

erence volume of V0 � 1 mm3, the characteristic strength �0 is
about 19% greater than the flexural strength �b4. If three-point
bending is applied to prismatic bars with a rectangular cross
section to determine the flexural strength �b3, the characteristic
strength is given by

�0 = �b3 


� V

V0
�1�m� 1

2�m + 1�2�1�m

��1 +
1

m�
(Eq 12)

By comparing Eq 11 and 12, it can be seen that the same
value of the characteristic strength �0 is obtained with flexural

Table 1 Properties of Commercial Engineering Ceramics

Material Property Unit Range Comments

High alumina Density, � g/cm3 3.7-4.0
Hardness, Vickers [HV 5] 1200-1800
Modulus of

elasticity, E
GPa 300-390 Shows only a slight decrease from room temperature (RT)

to up to 1300 °C. For alumina containing a glassy
grain boundary phase, it strongly decreases
above the glass transition temperature,
which generally lies above 700 °C.

Poisson’s ratio, v 1 0.21-0.24
Flexural strength,

four-point bending,
�4b

MPa 250-400 For very pure alumina it does not change
with temperature from RT to up to 1300 °C.

For alumina containing a glassy grain
boundary phase, it strongly decreases above
the glass transition temperature.

Weibull modulus, m 1 10-30 Does not change with temperature.
Subcritical crack

growth exponent, n
1 30-200 Strongly decreases with temperature.

Higher values belong to pure alumina and
lower values to alumina containing glassy
phases.

Fracture toughness,
KIc

MPa 
 m1/2 3-5 Values obtained with indentation methods
may be higher.

Sintered silicon carbide Density, � g/cm3 3.0-3.2
Hardness, Vickers [HV 5] 1800-2500
Modulus of

elasticity, E
GPa 380-420 Shows only a slight decrease from RT to up

to 1400 °C.
Poisson’s ratio, v 1 0.15-0.17
Flexural strength,

four-point bending,
�4b

MPa 350-600 Almost independent of temperature from
RT to up to 1400 °C.

Weibull modulus, m 1 10-15 Does not change with temperature.
Subcritical crack

growth exponent, n
1 around 200 Decreases with temperature.

Fracture toughness,
KIc

MPa 
 m1/2 around 3 Values obtained with indentation methods
may be higher.

Gas-pressure sintered silicon nitride Density, � g/cm3 3.1-3.3
Hardness, Vickers [HV 5] 1200-1600
Modulus of

elasticity, E
GPa 280-320 Shows only a slight decrease from RT to up

to 800 °C.
Poisson’s ratio, v 1 0.24
Flexural strength,

four-point bending,
�4b

MPa 600-1100 High quality materials should have a
flexural strength higher than 900 MPa.

Strength decreases with temperature above
the glass transition temperature, which
generally lies above 800 °C.

Weibull modulus, m 1 10-30 Now values higher than 15 are normal.
It does not change with temperature.

Subcritical crack
growth exponent, n

1 around 50 Strongly decreases with temperature.

Fracture toughness,
KIc

MPa 
 m1/2 4-8 Values obtained with indentation methods
may be higher.
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strength �b3 higher than �b4. Some manufacturers like to report
about flexural strength obtained by three-point bending, since
they obtain higher numbers.

6. An Example—The Design Calculation of a
Ceramic Disc Spring

The above stated peculiarities of designing with a brittle
material will be illustrated by the example of the probabilistic
calculation of strength of a disc spring made of standard silicon
nitride (Si3N4). The design of the spring is shown in Fig. 1.
Typical values of material parameters are assumed: elastic con-
stants E � 300 GPa and � � 0.27, Weibull parameters m �
15 and �0 � 1200 MPa for a unit volume V0 � 1 mm3, and
subcritical crack growth parameters n � 50 and C � 105

MPa2s.
Since the exact distribution of stresses over the volume

needs to be known for the calculation of strength of a ceramic
spring, the application of the fully geometrically nonlinear
theory of thin elastic conical shells may be needed for this
purpose.[30] For a shallow spring—i.e., a shallow shell such as
the one under consideration, that undergoes small deflexions
compared with its dimensions—however, the linear theory is
applicable as well, which gives a linear dependence of deflex-
ion and stresses on the applied load. Conveniently, there exists
an analytical (although rather complicated) solution to the lin-
earized problem of elasticity of thin conical shells.[31] Such an
exceptional case has advantages for further analysis, which can
then remain analytical. Figure 2 shows the distribution of
stresses over the radial section of the disc spring in Fig. 1,
modeled as a conical shell simply supported around the outer
edge and loaded with an axial force F uniformly distributed
along the inner edge. A force of about 2400 N would be needed
to flatten the spring. The variation of the meridian and circum-
ferential stresses, �x and �� respectively, over the thickness is
linear and that of the shear stress �xz is parabolic. The circum-
ferential stresses predominate over the largest part of the sec-
tion. The highest tensile stresses reach only one half of the
absolute value of the maximum compressive stress and are
more or less uniform, both of which are beneficial for a ce-
ramic spring. Since the circumferential stress is at the same
time one of the principal stresses, and the others are compar-
atively small, it can be used as the equivalent stress for the
calculation of failure probability according to Eq 10. This ap-
proximation is of negligible consequence for the result, which-
ever fracture criterion and definition of equivalent stress for a
multiaxial stress state is applied.

The results of the calculation of strength of the spring with

respect to the magnitude and duration of the applied loading are
presented in Fig. 3 and 4. The diagram in Fig. 3 shows the
probability of survival, as the complement to unity of the prob-
ability of failure Ps � 1 − Pf, immediately after the application
of load and after intervals of time (from 102 to 108 s) spent
under an invariable load. The decrease of the survival prob-
ability with time due to SCCG can be clearly seen from the
logarithmic plot in Fig. 4. Under a load of 1800 N, approxi-
mately corresponding to the maximum conventionally allow-
able design deflexion of 3/4 of the clearance height of the
spring, 99% of springs will survive for a very short time, 96%
will endure 100 s, whereas only 1 in 20 will remain after
108 s. The acceptable level of reliability depends on the specific
assignment of the spring; for 99% reliability to be maintained
after 108 s (more than 3 years) spent under the maximum load,
the allowable load reduces to 1250 N.

In practice, more detailed stress analysis than that used for
the illustrative purposes here might be necessary to take into
account the influence of the exact edge geometry and concen-
trated load application along the edge. To this end the use of
numerical methods is indispensable. For service at high tem-
peratures the effects of creep and even cyclic fatigue may need
to be considered. The reliability assurance of a ceramic spring
would normally also include an adequate proof testing.[12,32]

7. Summary

The stochastic nature of brittle fracture originates from the
random occurrence of inevitable microstructural defects in the
material. By acting as stress concentrators they allow the ini-

Fig. 1 The ceramic disc spring (height not to scale)

Fig. 2 The distribution of stresses, normalized by applied force, over
the radial section of the disc spring
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tiation of cracks, one of which may suddenly extend and result
in fracture. To account for this, a special approach to design
with brittle materials based on the application of principles of
probabilistic fracture mechanics and essentially different from
that appropriate to conventional, ductile structural materials, is
required.

Tensile stresses are decisive for the risk of brittle failure. In
terms of strength, brittle materials are more appropriate for
components loaded mainly in compression, whereas tensile
stresses should be minimized by appropriate design. Since
stresses at every point of the component enter into the calcu-
lation of strength, a precise knowledge of stress distribution
over the volume of the component is required. The probability
of failure of a brittle component is very sensitive to small
variations in the highest tensile stresses that arise. At a given
stress level the probability of failure increases with the size of
the component. Furthermore, the probability of failure of me-
chanically loaded ceramic components increases with time due
to the phenomenon of subcritical crack growth.

As has been illustrated by the example of a ceramic disc
spring, a proper approach to design with brittle materials can
ensure the reliability of ceramic components for load-bearing
applications. The troublesome occurrence of delayed fracture
due to subcritical crack growth in ceramics, to which the ma-

jority of failures of components made of these materials may be
attributed, can also be adequately accounted for in the assess-
ment of reliability.
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